The abundant larval transcript-1 and -2 genes of Brugia malayi encode stage-specific candidate vaccine antigens for filariasis.

نویسندگان

  • W F Gregory
  • A K Atmadja
  • J E Allen
  • R M Maizels
چکیده

Lymphatic filariasis is a major tropical disease caused by the mosquito-borne nematodes Brugia and Wuchereria. About 120 million people are infected and at risk of lymphatic pathology such as acute lymphangitis and elephantiasis. Vaccines against filariasis must generate immunity to the infective mosquito-derived third-stage larva (L3) without accentuating immunopathogenic responses to lymphatic-dwelling adult parasites. We have identified two highly expressed genes, designated abundant larval transcript-1 and -2 (alt-1 and alt-2), from each of which mRNAs account for >1% of L3 cDNAs. ALT-1 and ALT-2 share 79% amino acid identity across 125 residues, including a putative signal sequence and a prominent acidic tract. Expression of alt-1 and alt-2 is initiated midway through development in the mosquito, peaking in the infective larva and declining sharply following entry into the host. Humans exposed to Brugia malayi show a high frequency of immunoglobulin G1 (IgG1) and IgG3 antibodies to ALT-1 and -2, distinguishing them from adult-stage antigens, which are targeted by the IgG4 isotype. Immunization of susceptible rodents (jirds) with ALT-1 elicited a 76% reduction in parasite survival, the highest reported for a single antigen from any filarial parasite. ALT-1 and the closely related ALT-2 are therefore strong candidates for a future vaccine against human filariasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression and immune recognition of Brugia malayi VAL-1, a homologue of vespid venom allergens and Ancylostoma secreted proteins.

Several important nematode parasites have been found to express members of a gene family variously termed as venom allergen antigen homologue (vah) or Ancylostoma secreted protein (asp). In some cases these products are secreted by infective larval stages and have been suggested to be effective vaccine immunogens. We isolated the corresponding gene from the human filarial nematode, Brugia malay...

متن کامل

Evaluation of a Multivalent Vaccine against Lymphatic Filariasis in Rhesus macaque Model

Lymphatic filariasis affects 120 million people worldwide and another 1.2 billion people are at risk of acquiring the infection. Chemotherapy with mass drug administration is substantially reducing the incidence of the infection. Nevertheless, an effective vaccine is needed to prevent the infection and eradicate the disease. Previously we reported that a multivalent fusion protein vaccine (rBmH...

متن کامل

Novel phage display-based subtractive screening to identify vaccine candidates of Brugia malayi.

This study describes a novel phage display method based on an iterative subtraction strategy to identify candidate vaccine antigens of Brugia malayi. A cDNA library of the infective larval stage of B. malayi expressed on the surface of T7 phage was sequentially screened with sera samples from human subjects showing different manifestations of the disease. Antigens that selectively and specifica...

متن کامل

Immunization of Mastomys coucha with Brugia malayi Recombinant Trehalose-6-Phosphate Phosphatase Results in Significant Protection against Homologous Challenge Infection

Development of a vaccine to prevent or reduce parasite development in lymphatic filariasis would be a complementary approach to existing chemotherapeutic tools. Trehalose-6-phosphate phosphatase of Brugia malayi (Bm-TPP) represents an attractive vaccine target due to its absence in mammals, prevalence in the major life stages of the parasite and immunoreactivity with human bancroftian antibodie...

متن کامل

A novel serpin expressed by blood-borne microfilariae of the parasitic nematode Brugia malayi inhibits human neutrophil serine proteinases.

Serine proteinase inhibitors (serpins) play a vital regulatory role in a wide range of biological processes, and serpins from viruses have been implicated in pathogen evasion of the host defence system. For the first time, we report a functional serpin gene from nematodes that may function in this manner. This gene, named Bm-spn-2, has been isolated from the filarial nematode Brugia malayi, a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Infection and immunity

دوره 68 7  شماره 

صفحات  -

تاریخ انتشار 2000